Kinetics and Thermodynamics of the Gas Phase Reaction $SO_3 + NH_3 + N_2 \leftrightarrow H_3NSO_3 + N_2$

Edward R. Lovejoy

NOAA Aeronomy Laboratory, 325 Broadway, Boulder, Colorado 80303 Received: February 24, 1997; In Final Form: April 15, 1997[®]

The kinetics of the gas phase reaction $SO_3 + NH_3 + N_2 \leftrightarrow H_3NSO_3 + N_2$ were studied with a flow reactor coupled to a chemical ionization mass spectrometer for detection of SO_3 and H_3NSO_3 . The rate coefficient for the association reaction $SO_3 + NH_3 + N_2$ was measured as a function of temperature (280–340 K) and pressure (20–80 Torr of N₂). Analysis of the SO₃ decay and H_3NSO_3 appearance at higher temperatures yielded rate coefficients for H_3NSO_3 decomposition and the enthalpy of the reaction $SO_3 + NH_3 \leftrightarrow H_3NSO_3$: $\Delta H_{298K}^o = -24 \pm 1$ kcal mol⁻¹.

Introduction

The dominant loss mechanism for SO₃ in the atmosphere is reaction with gas phase water to produce sulfuric acid.^{1–3} The association reaction of SO₃ with ammonia (eq 1) typically

$$SO_3 + NH_3 + M \leftrightarrow H_3NSO_3 + M$$
 (1)

accounts for less than 10^{-4} of the SO₃ loss in the atmosphere.^{3,4} H₃NSO₃ appears to have an unusually strong affinity for H₂-SO₄, and it has been proposed that the association of H₃NSO₃ and H₂SO₄ may be an important step in the formation of aerosol in the atmosphere despite the low concentrations of H₃NSO₃.⁴

The stability of H_3NSO_3 is not well established. High-level calculations by Wong et al. predict that H_3NSO_3 is bound by about 19 kcal mol⁻¹ relative to NH₃ and SO₃.⁵ Lovejoy and Hanson⁴ report that the H_3N –SO₃ bond enthalpy is greater than 20 kcal mol⁻¹, based on the observation of exponential SO₃ decays in excess NH₃ at room temperature.

The theoretical work by Wong et al.⁵ predicts that gas phase H_3NSO_3 is a zwitterion with significant electron donation from the N to S leading to a large dipole moment of 6.6 D. Wong et al.⁵ also predict that gas phase H_3NSO_3 has a significantly longer (about 0.1 Å) N–S bond than the solid form. Canagaratna et al.⁶ have measured the microwave spectrum of gas phase H_3 -NSO₃ and find that the structure agrees very well with the theoretical predictions of Wong et al.⁵ They also confirm that H_3NSO_3 is a zwitterion with about 0.4 electrons transferred from N to S.

Shen et al.⁷ reported the first kinetic measurements for the reaction $SO_3 + NH_3$. They measured a rate coefficient of (6.9 \pm 1.5) \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ in 1–2 Torr of He with a flow reactor and photofragment-emission detection of SO₃. Lovejoy and Hanson⁴ have recently reported measurements of the pressure dependence of the association rate coefficient and observation of the H₃NSO₃ product.

In the present work, the kinetics of the loss of SO_3 in the presence of NH_3 are measured as a function of temperature (280–343 K) and pressure (20–80 Torr of N_2). At elevated temperatures (383–402 K) the decomposition of H_3NSO_3 is observed, and equilibrium constants for reaction 1 are measured. These data yield the temperature dependence of the $SO_3 + NH_3$ reaction near the low-pressure limit and the heat of formation

of H_3NSO_3 . The implications of these results to the understanding of the atmospheric chemistry of H_3NSO_3 are discussed.

Experimental Section

The kinetics of the reaction of SO3 with NH3 were studied by monitoring the concentration of SO₃ at the exit of a laminar flow reactor as a function of the contact distance between SO3 and NH₃. SO₃ was monitored with chemical ionization mass spectrometry.³ The reactor was a Pyrex cylinder 50 cm long with a 1.62 cm internal diameter. The temperature of the reactor was controlled by circulating temperature-regulated fluid through copper tubing soldered to an insulated copper sleeve surrounding the reactor. The reactor temperature was measured with a thermocouple mounted on the end of a movable inlet. The temperature gradient was less than 2 K along the reaction zone for the conditions of the present work. SO3 was generated near the end of the movable inlet by oxidizing SO2 on a hot nichrome filament in the presence of O2, as described previously.³ Ammonia was added to the reactor at the upstream end along with the main flow of N₂. Mixtures of NH₃ in N₂ were prepared in 12 L Pyrex bulbs by adding measured pressures of NH3 and N₂. The reactor pressure was measured with a capacitance manometer and gas flows were measured with mass flow meters. The mass flow meters were calibrated with a wet test meter or by measuring the rate of change of pressure in a calibrated volume.

The CIMS ion—molecule reactor was operated at 5 Torr with about a 0.1 s contact time with the SO₃ reactor effluent. SO₃ was detected by using the following reactions^{3,8}

$$NO_3^-HNO_3 + SO_3 \rightarrow NO_3^-SO_3 + HNO_3$$
 (2)

and

$$\operatorname{SiF}_{5}^{-} + \operatorname{SO}_{3} \rightarrow \operatorname{FSO}_{3}^{-} + \operatorname{SiF}_{4}$$
 (3)

H₃NSO₃ was detected by using

$$NO_3^{-}HNO_3 + H_3NSO_3 \rightarrow H_2NSO_3^{-}HNO_3 + HNO_3$$
 (4)

Initial SO₃ concentrations in the neutral flow reactor ranged from about $(1-10) \times 10^9$ molecule cm⁻³. The NH₃ concentration was typically at least 50 times larger than [SO₃] so that

S1089-5639(97)00652-X This article not subject to U.S. Copyright. Published 1997 by the American Chemical Society

[®] Abstract published in Advance ACS Abstracts, June 15, 1997.

Figure 1. First-order rate coefficient for SO_3 loss as a function of [NH₃] and temperature. Circles = 280 K, 41.4 Torr. Squares = 301 K, 41.0 Torr. Triangles = 334 K, 40.6 Torr.

 TABLE 1: Summary of SO₃ + NH₃ Rate Coefficients

p(N ₂) (Torr)	<i>T</i> (K)	v^a (cm s ⁻¹)	$[NH_3]_{max} \\ (10^{12} \text{ molecules} \\ \text{ cm}^{-3})$	no. of <i>k</i> ^I measmnts	$k_{\rm f}^{b} (10^{-12} {\rm cm}^{3} { m molecule}^{-1} { m s}^{-1})$
20.5	280	391	53	7	2.76 (0.06)
20.1	298	423	81	8	1.90 (0.10)
21.1	317	445	124	9	1.34 (0.14)
20.2	317	441	118	6	1.35^{c} (0.08)
20.5	341	472	133	8	$0.87^{c}(0.05)$
41.4	280	197	19	8	4.58 (0.16)
41.0	301	214	43	8	3.16 (0.06)
41.0	319	237	72	7	2.30 (0.14)
40.6	334	240	68	6	1.70 (0.08)
40.0	343	247	88	6	1.47 (0.10)
81.3	280	100	4.9	6	8.2 (0.3)
79.8	300	107	7.1	7	5.04 (0.34)
80.4	320	113	13	8	3.47 (0.22)

^{*a*} Average reactor flow velocity. ^{*b*} 95% confidence levels for precision are indicated in parentheses. ^{*c*} SiF₅⁻ reagent ion.

the SO_3 loss was pseudo first order in SO_3 . The Reynolds number for the neutral reactor flow was about 75.

Results and Discussion

Rate coefficients were measured by monitoring the concentration of SO₃ at the exit of the flow reactor as a function of the contact distance with NH₃ for a range of NH₃ concentrations. The NO₃⁻HNO₃ reagent ion was used for the majority of the measurements. At temperatures below 350 K the SO₃ decays were exponential, as expected for a first-order process, and as observed previously.4 First-order SO3 loss rate coefficients were extracted from the decays by using the Brown algorithm.9 Firstorder rate coefficients are plotted as a function of the concentration of NH₃ for a range of temperatures in 40 Torr of N₂ in Figure 1. The slopes of these plots yield the effective secondorder rate coefficients for $SO_3 + NH_3$. All of the measured association rate coefficients are listed in Table 1. The quoted errors are the 95% confidence levels for precision only. The overall uncertainty in the rate coefficients is estimated to be $\pm 20\%$. The room temperature rate coefficients measured in this work are in excellent agreement with the previous measurements of Lovejoy and Hanson,4 but are about 100 times smaller than the original measurement by Shen et al.⁷ Heterogeneous loss of SO₃, possibly related to the relatively high levels of SO₃, may have influenced the Shen et al.7 measurement.

The pressure and temperature dependence of the rate coefficient for a three-body reaction may be described by the Troe formalism¹⁰

$$k(M, T) = \left(\frac{k_0(T)[M]}{1 + \frac{k_0(T)[M]}{k_{\infty}(T)}}\right) 0.6^{y}$$
(5)
$$y = \left(1 + \left[\log\left(\frac{k_0(T)[M]}{k_{\infty}(T)}\right)\right]^2\right)^{-1}$$

where $k_0(T) = k_0^{300}(T/300)^{-n}$ and $k_{\infty}(T) = k_{\infty}^{300}(T/300)^{-m}$. A fit of the k(M,T) data (Table 1) to eq 5, including the previous measurements⁴ at 295 K, gives $k_0^{300} = (3.6 \pm 0.4) \times 10^{-30}$ cm⁶ molecule⁻² s⁻¹, $k_{\infty}^{300} = (4.3 \pm 1.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, and $n = 6.1 \pm 1.0$, with *m* fixed equal to zero. The errors reflect an estimated 20% uncertainty in the measured rate coefficients. The fit results changed by less than 10% for 0 < m < 3. The assumption that the high-pressure limiting rate coefficient is independent of temperature (i.e. m = 0) is reasonable considering that the high-pressure limit rate coefficient is large at room temperature and the temperature dependence of k_{∞} is generally weak (see, for example, ref 10).

At temperatures above 380 K the unimolecular decomposition of H_3NSO_3 into $SO_3 + NH_3$ competed efficiently with the association reaction, and the SO_3 decays were not simple exponentials (see Figure 2). For these conditions the SO_3 decay and H_3NSO_3 appearance were modeled to extract the rate coefficient for decomposition of H_3NSO_3 . The kinetics were modeled with the following mechanism

$$SO_3 + NH_3 + M \leftrightarrow H_3NSO_3 + M \qquad (k_f, k_r) \qquad (6)$$

$$SO_3 + wall \rightarrow (k_w^{SO_3})$$
 (7)

$$H_3NSO_3 + wall \rightarrow (k_w^{SA})$$
 (8)

For this mechanism [SO₃] and [H₃NSO₃] are described by

$$[SO_3] = \frac{[SO_3]_0}{a-b} [(a+c)\exp(at) - (b+c)\exp(bt)] \quad (9)$$

and

$$[H_3NSO_3] = \frac{k_f[NH_3][SO_3]_0}{a-b} [\exp(at) - \exp(bt)] \quad (10)$$

where

$$a = 0.5[(d^{2} - 4e)^{1/2} - d]$$

$$b = -0.5[(d^{2} - 4e)^{1/2} + d]$$

$$c = k_{r} + k_{w}^{SA}$$

$$d = k_{f}[NH_{3}] + k_{r} + k_{w}^{SO3} + k_{w}^{SA} k_{w}^{SO3}$$

$$e = k_{w}^{SA}k_{f}[NH_{3}] + k_{s}k_{w}^{SO3} + k_{w}^{SA}k_{w}^{SO3}$$

The SO₃ decay and H₃NSO₃ appearance were fit simultaneously to these equations with k_f fixed at the value extrapolated from the lower temperature data. The reaction time was calculated using the relationship t = z/(1.7v) where z is the reaction distance and v is the average flow velocity.⁴ The rate coefficient for SO₃ wall loss was fixed at the value measured in the absence of NH₃. This value was always within 10% of the diffusion-limited value, implying that the SO₃ reaction probability with the reactor wall was greater than 10⁻³. The nonlinear regression variables included the first-order H₃NSO₃

Figure 2. SO₃ and H₃NSO₃ signals (NO₃⁻SO₃ and H₂NSO₃⁻HNO₃) as a function of reaction distance and [NH₃]. Reactor conditions: $v = 288 \text{ cm s}^{-1}$, 393 K, 40.0 Torr of N₂. Squares: [NH₃] = 9 × 10¹³ molecule cm⁻³. Circles: [NH₃] = 1.8 × 10¹⁴ molecule cm⁻³. Solid lines are fits to the data as described in the text. Fit results are listed in Table 2.

TABLE 2: Summary of $SO_3 + NH_3 + N_2 \leftrightarrow H_3NSO_3 + N_2$ Equilibrium Measurements

p(N ₂) (Torr)	<i>T</i> (K)	$\frac{k_{\rm f}(10^{-13}{\rm cm}^3}{\rm molecule^{-1}}$ ${\rm s}^{-1})$	$[NH_3] \\ (10^{13} \text{ molecule} \\ \text{cm}^{-3})$	$\frac{v}{(\mathrm{cm}\mathrm{s}^{-1})}$	$k_{\rm r}$ (s ⁻¹)	ΔH° (kcal mol ⁻¹)
40.8	393	7.4	5	281	44	-24.0
40.8	393	7.4	9	281	41	-24.1
40.8	393	7.4	18	281	38	-24.1
40.4	402	6.5	12	295	97	-23.8
40.4	402	6.5	12	295	94	-23.9
40.4	402	6.5	25	295	117	-23.7
40.0	393	7.3	18	288	41	-24.1
40.0	393	7.3	9	288	37	-24.2
40.3	383	8.3	9	279	22	-24.1
40.3	383	8.3	6	279	20	-24.1
40.3	383	8.3	2	279	21	-24.1
40.6	393	7.4	10	280	33	-24.3
40.6	393	7.4	14	280	38	-24.1
40.6	393	7.4	19	280	39	-24.1
40.6	393	7.4	13	280	40	-24.1
79.1	383	13	9	138	33	-24.1
79.1	383	13	19	138	48	-23.8
79.1	383	13	5	138	35	-24.0
79.1	383	13	14	138	47	-23.8
41.0	393	7.4	9	272	36	-24.2
41.0	393	7.4	14	272	41	-24.1
41.0	393	7.4	5	272	35	-24.2

decomposition rate coefficient k_r , the H₃NSO₃ wall loss (k_w^{SA}) , and the CIMS sensitivity for SO₃ relative to H₃NSO₃. A set of experimental SO₃ and H₃NSO₃ profiles and the simultaneous fits to eqs 9 and 10 are presented in Figure 2. All the equilibrium measurements are summarized in Table 2. The rate coefficient for wall loss of H₃NSO₃ was consistently about 40% less than the diffusion-limited value, implying that at these elevated temperatures the wall reaction probability for H₃NSO₃ was reduced and/or evaporation of H₃NSO₃ varied by less than about 20% for the range of NH₃ concentrations used in this work. The CIMS sensitivities for H₃NSO₃ and SO₃ were a function of the concentration of the present work, the CIMS was typically 1–3 times more sensitive to H₃NSO₃ than SO₃.

The equilibrium constant could only be measured over a limited range of temperatures because of the very strong temperature dependence of the rate coefficient for decomposition of H_3NSO_3 . Therefore, the reaction enthalpy was derived by using a third-law analysis. The entropy of H_3NSO_3 was calculated from experimental⁶ and theoretical⁵ structural pa-

 TABLE 3: Predicted H₃NSO₃ Decomposition Lifetimes for

 Tropospheric Conditions

pressure (Torr)	$T^{a}\left(\mathrm{K} ight)$	$k_{\rm f} (10^{-11}{\rm cm}^3 { m molecule}^{-1}{ m s}^{-1})$	$k_{\rm r} ({\rm s}^{-1})$	H ₃ NSO ₃ decomp lifetime (s)
760	281	2.2	9×10^{-3}	110
405	254	2.3	1.1×10^{-4}	9100
195	222	2.5	1.4×10^{-7}	7×10^{6}

^a On the basis of a model atmosphere for 40° N in March (ref 15).

rameters and scaled vibrational frequencies.⁵ The entropies of SO₃ and NH₃ were taken from the literature.¹¹ These values yielded an entropy change for the formation of H₃NSO₃ (reaction 1) of -0.036 kcal mol⁻¹ K⁻¹ for 250 K < *T* < 400 K. Calculations also showed that the change in heat capacity for reaction 1 is negligible for 300 K < *T* < 400 K ($|\Delta C_p|$ < 1 cal mol⁻¹ K⁻¹), so that ΔH° is essentially independent of temperature between 300 and 400 K.

In the equilibrium experiments, data were taken in the entrance and mixing region immediately downstream of the SO₃ moveable source (see Figure 2). It should be noted that at lower temperatures SO₃ decays were linear in this region, even though the radial velocity and concentration gradients are not expected to be fully developed until about 5–10 cm downstream of the inlet.¹² On the basis of the poorly defined reaction time at short reaction distances, the uncertainties in the measured equilibrium constants are estimated to be about a factor of 2. This yields a reaction enthalpy for SO₃ + NH₃ \leftrightarrow H₃NSO₃ of $\Delta H_{298K}^2 = -24 \pm 1 \text{ kcal mol}^{-1}$ and a heat of formation for H₃NSO₃ of $\Delta H_{1,298K}^2 = -129.6 \pm 1.0 \text{ kcal mol}^{-1}$, where the standard state is 1 atm. This experimental H₃N–SO₃ bond enthalpy is about 4 kcal mol⁻¹ larger than the theoretical value.⁵

Atmospheric Implications

The lifetime of H₃NSO₃ with respect to unimolecular decomposition for several conditions of pressure and temperature characteristic of the troposphere are listed in Table 3. Other potential atmospheric loss processes for H₃NSO₃ include scavenging by aerosol and clustering with H₂SO₄. The heterogeneous reaction probability for H₃NSO₃ is probably near unity. In this case the lifetime of H₃NSO₃ with respect to aerosol scavenging will range from seconds in clouds to many hours in clean air.¹³ Assuming a very efficient reaction with H₂SO₄⁴ and ambient [H₂SO₄] ranging from 10⁶ to 10⁷ molecule cm⁻³,¹⁴ yields a lifetime of H₃NSO₃ with respect to clustering with H_2SO_4 of about 10^3-10^4 s. This analysis shows that the unimolecular decomposition of H₃NSO₃ is most important in the lower troposphere for clean conditions. In the free troposphere the dominant loss processes for H₃NSO₃ are probably scavenging by aerosol and clustering with H₂SO₄. In order to understand the role of H₃NSO₃ in the nucleation of atmospheric particles, the kinetics of production and decomposition of clusters of the form $H_3NSO_3(H_2SO_4)_x$ are needed.

Acknowledgment. This work was supported in part by the NOAA Climate and Global Change Program.

References and Notes

- (1) Reiner, T.; Arnold, F. J. Chem. Phys. 1994, 101, 7399.
- (2) Kolb, C. E.; Jayne, J. T.; Worsnop, D. R.; Molina, M. J.; Meads, R. F.; Viggiano, A. A. J. Am. Chem. Soc. **1994**, 116, 10314.
- (3) Lovejoy, E. R.; Hanson, D. R.; Huey, L. G. J. Phys. Chem. **1996**, 100, 19911.

(4) Lovejoy, E. R.; Hanson, D. R. J. Phys. Chem. 1996, 100, 4465.

(5) Wong, M. W.; Wiberg, K. B.; Frisch, M. J. J. Am. Chem. Soc. 1992, 114, 523.

(6) Canagaratna, M.; Phillips, J. A.; Goodfriend, H.; Leopold, K. R. J. Am. Chem. Soc. 1996, 118, 5290.

- (7) Shen, G.; Suto, M.; Lee, L. C. J. Geophys. Res. 1990, 95, 13981. (8) Arnold, S. T.; Morris, R. A.; Viggiano, A. A.; Jayne, J. T. J. Geophys. Res. 1995, 100, 14141.

(9) Brown, R. L. J. Res. Natl. Bur. Stand. 1978, 83, 1.
(10) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. Chemical Kinetics and Data for Use in Stratopheric Modeling; JPL publication 94-26; Jet Propulsion Laboratory: Pasadena, CA, 1994.

(11) Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. JANAF Thermochemical Tables. J. Phys. Chem. Ref. Data Suppl. 1 1985, 14.

- (12) Keyser, L. F. J. Phys. Chem. 1984, 88, 4750.
- (13) Lovejoy, E. R.; Huey, L. G.; Hanson, D. R. J. Geophys. Res. 1995, *100*, 18775.
- (14) Weber, R. J.; McMurry, P. H.; Eisele, F. L.; Tanner, D. J. J. Atmos. Sci. 1995, 52, 2242

(15) Houghton, J. T. The Physics of Atmospheres; Cambridge University Press: Cambridge, 1986.